Category Archives: Nature Outlook

Credit: Daniel Romero

Wild bees: Lone rangers

In a green field outside Madrid, at the foot of the snow-covered Guadarrama mountain range, lies a sun-faded snail shell. Its opening sealed with a cap of dried mud, the shell contains the larva of a wild, solitary bee, together with its first meal of bee bread — a mixture of pollen and nectar. Entomology graduate student Daniel Romero picks up the shell and, concluding that it contains the nest of a mason bee, stores it in a clear plastic tube, labels the red cap with a marker, and closes it.

Back at the Complutense University of Madrid, Romero sets ten tubes of the nesting bees he collected on his professor’s desk. They are just a fraction of the hundreds of samples that he and his colleagues will gather during a four-year Spanish government-funded study of how artificial chemicals are affecting the biodiversity of wild pollinators and their immune and reproductive systems. In the warmth of the office, some of the young adults twitch and scratch at their now-crumbly mud doors. Researchers watch the young adult bees slowly emerge into their new world. When the air cools and the humans leave the room, the bees return to their pollen pillows. Unlike honeybees, solitary bees buzz to their own drum.

See an album of photos I took while reporting this story.

Continue reading

A preventable cancer

I reported and wrote an infographic on the epidemiology of liver cancer. It was a good growing experience to work with a designer and an editor on a piece of visual, data-oriented journalism. I learned a lot and ended up wanting to experiment more with conveying data visually, with words and stories as a complement, rather than the other way around. I’m looking forward to the next opportunity.

To best see the visual elements of the infographic, I recommend checking out the PDF below rather than the HTML web version.

First published by Nature Outlook: [html] [pdf].

Big science at the table

José Ordovas sips a mint tea in a languid café in Madrid, Spain. His eyes scan two mobile phones as he confirms his next appointments. In conversation, he switches effortlessly between Spanish and English to find the right expressions. If the geneticist seems to be moving on a different wavelength from the other patrons, he could blame it on the jet lag: he has just flown from Boston where it’s now 5am. This is his third overseas trip this month, but Ordovas contends his frequent visits from Tufts University, where he’s based, to Europe have no adverse effects. “For me the time difference doesn’t matter, I’m up at 4am to make calls to Europe when I’m home anyway, and then I’m up late on calls to California,” he says.

Ordovas embodies the hustle and bustle of the ‘big science’ approach that has changed nutrition research in the past decade. This field, once confined to small groups of researchers studying the effects of single nutrients — such as particular vitamins or proteins — on a few dozen volunteers, is now adopting the heavy-lifting tools developed for genetics and pharmaceutical research. It also has a catchy name: nutrigenomics. And the more that researchers learn how our genes interact with our diet, the more they appreciate the deeper insight gained by an interdisciplinary approach. Such knowledge could lead to breakthroughs in our understanding of risk factors for diabetes and cardiovascular disease or, for example, improve the design of weight-loss diets.

Continue reading