Category Archives: Datelines

Wild bees: Lone rangers

In a green field outside Madrid, at the foot of the snow-covered Guadarrama mountain range, lies a sun-faded snail shell. Its opening sealed with a cap of dried mud, the shell contains the larva of a wild, solitary bee, together with its first meal of bee bread — a mixture of pollen and nectar. Entomology graduate student Daniel Romero picks up the shell and, concluding that it contains the nest of a mason bee, stores it in a clear plastic tube, labels the red cap with a marker, and closes it.

Back at the Complutense University of Madrid, Romero sets ten tubes of the nesting bees he collected on his professor’s desk. They are just a fraction of the hundreds of samples that he and his colleagues will gather during a four-year Spanish government-funded study of how artificial chemicals are affecting the biodiversity of wild pollinators and their immune and reproductive systems. In the warmth of the office, some of the young adults twitch and scratch at their now-crumbly mud doors. Researchers watch the young adult bees slowly emerge into their new world. When the air cools and the humans leave the room, the bees return to their pollen pillows. Unlike honeybees, solitary bees buzz to their own drum.

See an album of photos I took while reporting this story.

Continue reading Wild bees: Lone rangers

Building a Better Glacial Speedometer

Greenland is the land of escaping lakes. In the summer, when soot lands on the ice sheet’s snowy surface and the Sun begins to melt the snow, bright blue lakes form on top of the ice. Just as on land, the water seeks a way down.

Sometimes, instead of carving surface channels, water trickles into the ice sheet through crevasses and vertical shafts called moulins. In the most dramatic cases, a lake can burst through a kilometer-thick ice sheet and rush to the bottom of the glacier in a forceful waterfall. There, under high pressure, water may help the glacier glide a little faster over the rock below.

Just how fast, however, is the subject of an ongoing debate. Continue reading Building a Better Glacial Speedometer

How Nicaraguan Villagers Built Their Own Electric Grid

On a dirt road high in Nicaragua’s northern mountains, a small knot of men and two precocious young boys uncoil electrical cable from the back of a pickup truck. Other workers swing machetes at overhanging tree branches. Along the cleared shoulder of the road, another crew tightens a cable on a freshly planted utility pole. Continue reading How Nicaraguan Villagers Built Their Own Electric Grid

Finding Debris Clouds Around Asteroids Headed Our Way

Small spikes in the magnetic field in our solar system may reveal dust and debris, including some on a collision path with Earth, according to a researcher at the European Geosciences Union (EGU) General Assembly in Vienna, Austria.

The solar wind, which consists of charged particles flowing at high speed from the Sun, creates a magnetic field detectable from interplanetary space probes. Planetary scientist Christopher Russell of the University of California in Los Angeles and his colleagues have been examining small wrinkles in that magnetic field called interplanetary field enhancements (IFEs) since the 1980s. At an EGU session on 13 April, Russell presented the latest evidence that it might be possible to use IFEs to detect asteroid-orbiting clouds of dust and rock, including some that threaten Earth.

“The dust is sort of a warning signal. It’s the smoke telling you where the fire is,” he told Eos. Continue reading Finding Debris Clouds Around Asteroids Headed Our Way